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Using lattice simulations, we study the infrared behavioa particularly interestingU(2) gauge the-
ory, with six massless Dirac fermions in the fundamentatasgntation. We compute the running gauge
coupling derived non-perturbatively from the Schrodinfienctional of the theory, finding no evidence
for an infrared fixed point up through gauge coupliggsof order20. This implies that the theory either
is governed in the infrared by a fixed point of considerahlergjth, unseen so far in non-supersymmetric
gauge theories, or breaks its global chiral symmetriesymiog a large number of composite Nambu-
Goldstone bosons relative to the number of underlying degot freedom. Thus either of these phases
exhibits novel behavior.

PACS numbers: 11.10.Hi, 11.15.Ha, 11.25.Hf, 12.60.NZ30.Qc

Introduction A new sector, described by a strongly in- that the renormalization group (RG) flow toward the in-
teracting gauge theory, could play a key role in physicdrared (IR) should result in a thinning of the degrees of
beyond the Standard Model. With the recent discoveryreedom. This can provide an important constraint on IR
of a 125 GeV Higgs-like scalar [1, 2], SU(2) vector-like behavior if it can be shown that the IR count cannot exceed
gauge theories provide attractive candidates. Due to thine UV count. One implementation of this idea, much stud-
pseudo reality of the fundamental representation of SU(2)ied recently [12, 13], defines the degree-of-freedom count
two-color theories withV; massless Dirac fermions in this through the coefficient entering the trace of the energy
representation have an enhanced chiral symmetry, a novelomentum tensor on an appropriate space-time manifold.
symmetry breaking pattern SRIV,;) — Sp@QN;), and, Although a UV-IR inequality can perhaps be proven, it
therefore, a relatively large number of Nambu-Goldstoneloes not seem to lead to useful constraints.
bosons (NGB) [3, 4]. This feature has motivated SU(2)-

based models of a composite Higgs boson [5, 6] and Oéount via the thermodynamic free enetgy(T"), using the

dark matter [7-9]. temperaturél’ as the RG scale. The dimensionless quan-
These models tak®y; = 2, but new intriguing possibil- tity f (7)) = 90F (T) /x*T* is T-independent for a free

ities emerge for largeN,. With N, just below the value massless theory, leading fo= 2Ny + (7/2)Np + Ng,

at which asymptotic freedom is lost, a conformal windowwhere Ny, N, and N count the gauge, Dirac-fermion,

opens up, with the theory initially governed by a weakly-and real-scalar fields. The conjectured inequality of Ref.

coupled infrared fixed point (IRFP). A¥ is decreased, [14] is that for an asymptotically free theory;r =

the strength of the fixed point increases. Below some critf(o) < fov = f(00).

ical value N, chiral symmetry is broken and the theory . .

confines. This critical value defines the lower edge of the In the case of an IR phase with broken chiral symme-

conformal window [10, 11]. Knowing the extent of the try and anf'nememfm counts the nl_meer of NGBs. For

window and the behavior of theories in it and near it could® VeCtor-like SULV) gauge t_he;)ry WithV > 3 and Ny

be crucial for building a successful model of BSM physics Pirac fermions, this count isvVy — 1. Also, in the UV,

. . . . Ny = N2 —1andNp = NN;. The above inequality
The extent of the conformal window is also interesting o
from a more theoretical point of view, and this is partic- then demandsVi < ; (7N + V8IN?Z — 16)- Thisis a
ularly true of the two-color theory. For example, a gen-testable constraint, and it has been satisfied by recent lat-
eral notion about quantum field theories, as first applied tdice simulations [15]. ForN = 2 on the other hand, the
second-order phase transitions and critical phenomena, @&hanced chiral symmetry, the different pattern of sym-

Another approach [14] defines the degree-of-freedom
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metry breaking, and the resultant enhanced NGB counfhis smearing procedure may be applied iteratively,isay
(2N} — Ny — 1) [3] lead to a significantly reduced bound times, to produce stout link§ = U). It has the ad-
on Ny for the broken phaseVs < 4+ \/_)/2 ~ 4.7. vantage that it is analytic and can therefore be used in con-
Crude estimates of the edge of the conformal windowjunction with molecular dynamics (MD) updating schemes
based on quasi-perturbative methods, also exist. Gapuch as [29]. The formulas required to implement this
equation methods [16] provide an estimate of the gaugemearing procedure in an MD algorithm are derived for
coupling strength, and therefore maximum valueNof,  the case of SU(3) links in [26]. We have derived the rele-
required to induce spontaneous chiral symmetry breaking/ant formulas for the SU(2) case. Recently, another group
For any SU(V) gauge theory, these notions lead to the esimplemented two-color stout-smearing as well [30].
timate N¢ ~ 4N. While this is nicely compatible with We use only one level of stout-smearing with an isotropic
the inequality forNV > 3, it clearly disagrees with it for smearing parameter,, = p = 0.25. As all calculations
N = 2. This tension suggests that té; = 6 theory in this work are done with Dirichlet boundary conditions
could be particularly worthy of study. (BC) in the time directions, there is some ambiguity in
Early lattice calculations attempted to explore the two-how to implement the smearing of the gauge field near this
color conformal window by studying the lattice theory at boundary. We choose to not smear the boundary links with
strong bare coupling [17, 18]. Recent efforts have pri-bulk links andvice versa. This choice results in a simpler
marily searched for an IRFP with non-perturbative runningrunning-coupling observable (which will be defined in the
coupling calculations. Evidence that; = 10 (V; = 4)  nextsection).
is inside (outside) the conformal window is presented in The Wilson fermion action contains an additional irrele-
Ref. [19]. Additionally, Ohkiet al. argue thatV, = 8 is  vant operator that lifts the mass of the fermion doublers to
inside the conformal window [20]. The cadé; = 6, ar-  the cutoff scale so they decouple from the calculation. This
guably the most interesting, while tackled by many groupsadditional term explicitly breaks chiral symmetry, and as a
[19, 21-24], has remained inconclusive. result the fermion mass is additively renormalized. The
Here we study theV; = 6 theory, drawing on larger bare massn, therefore must be carefully tuned in order
computational resources than in all previous work, to deto restore chiral symmetry. The critical value of the bare
termine whethetV, = 6 has an IRFP by calculating the mass (as a function of the bare coupling)(g3) is defined
Schrodinger Functional (SF) [25] running coupling. Weas the bare mass value that results in a zero renormalized
use the stout-smeared [26] Wilson fermion action, whichquark mass [31]. In practicep. is determined, at fixed
suppresses coupling the fermions to unphysical fluctuabare gauge coupling? and lattice vquméL/a)g x2L/a,
tions of the gauge field on the scale of the lattice spacingas the root of a fitted linear function to measurements of the
This improved action reduces lattice artifacts and allowgenormalized quark mass versus the bare quark mass. This
us to search for an IRFP up through a large and interesis done for a range of bare couplings and lattice volumes
ing range of running couplings. Smeared actions have alsgnd the results are fit to a polynomial given by
been used in SF running coupling studies of other theories

[27, 28]. f|t 5 a a
Preliminaries A stout-smeared fermion action re- (90’ _) Zg [ai + b (f)} : (4)

places “thin” gauge links by “fat” links which are averaged

with nearby gauge links. To define a stout-smeared [26i—hen mnt

link is we start withC), (x), the weighted sum of staples

about the link(z, z + u)

(95,0) is used in the running coupling calcula-

tions. All data used to fitn{it (42, /L) andmfit (42, 0)
are shown in Figuré.

_ S\t N . .
) = Z v (Uy () Uy, (2 + 0) U (2 + 1) In order to guarantee that we can take a continuum limit,
vFH we need to obtain data only from the weak-coupling side

+U (x =) U, (x — D) U, (x — 0+ 1)) . of any spurious lattice phase transition. With this in mind,

(1) Wwescan through the bare parameter space and locate peaks

We want our fat links to be elements of SN, Thisis N the plaquette susceptibility onla/aQ: 10 lattice. This
guaranteed by taking the smearing kernel to be of fefffn ~ S€arch indicates a line in the, — g; plane of first or-

with Q an element of the Lie algebsa (V). We take der phase transitions that ends at a critical point at around
i ~ 2.2. Forg2 < 2.2, we see crossover behavior. In
Qu(x) = 3 (QL (z) = Q, () F|gure1 we show the above transition line plotted along
i with mf't(gg,()). Figurel indicates that our action has a
——=Tr (Qf (z) = Q. (z)), (2 sensible continuum limit only fog2 < 2.175. Therefore,

with Q, (z) = C (fﬁﬁ () (1 is not summed over) we examine the running coupling only on lattices with a
= C, p _

. : bare coupling within this range.
Then afatlinkis defined by Running Coupling To define a non-perturbative

U () = exp (ZQEL”) (95)) U™ (z).  (3) renormalized coupling, we employ the Schrodinger
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. We choose the lowest possihNé; /, to give a reasonable
"j"cou inuum iu:i 2 i i i
- gutimum it x? per dof (in practice, values in the range®/dof €

109 % 20 | [0.7,1.5]), finding N1, /o<1 = 6 and Ny /4512 = 5. This

-0.1r 12% x 24 . .
4140 x 28 procedure produces smooth functions, one for each lattice

o2l " fine of bulk phase transition] | volume L /a, of the renormalized coupling versus the bare
coupling. Before using this interpolation for further anal
ysis, it is worth noting that there is no hint of an IRFP in
the lattice data and therefore in the interpolating cunies.
any fixedg3, the running coupling? (g3, £) is seen only
to increase as a function @f/a in the range of the data.

The question is whether a careful continuum extrapola-
tion will indicate otherwise. A step scaling [35] analysis
5 allows us to address this issue and to study the renormal-
90 ized coupling over a large range of scales in computation-

_ ally feasible manner. The continuum step scaling function
FIG. 1: Bare masses that result in zero PCAC mass at lattiee vo (u, s) is defined by

umess? x 16, 103 x 20, 123 x 24, 143 x 28, and163 x 32. All

1>
o —
o =
D
on

N
N s

data points fit tOm‘:,it (gg, #) and the continuum extrapolation 7 (u.s) dg?
fit ( 2 - fit ( 2 —y = 2logs. (7)
me- (95,0) (black dashed line) are shownn," (g7,0) deter- u B (g?)

mines masses used in running coupling simulations. Aduitlg . . . .
the peak in the plaquette susceptibility (turquoise xshisg. |t IS the renormalized coupling at a length scale given

We collect all running coupling data along the critical miise  that the running coupling® = u ata length scald.. On
on the weak coupling side of the phase transition line. the lattice we calculate the discrete step scaling fungtion

2 70) =0 ()]

It is the value of the renormalized coupling on a lattice
volume of (sL/a)* and bare coupling tuned such that we
have a renormalized coupling afon a lattice of volume
(L/a)4. We arrive back at a continuum step scaling func-
tion by taking the continuum limit;

(8)

functional (SF) [25]. It is given by a path integral
over gauge and fermion fields that reside within a four-
dimensional Euclidean box of spatial exterit with
periodic BC’s in spatial directions and Dirichlet BC's
in the time direction. We choose gauge BC's [32],
U (@) 0y = exp [~intm] and U (2, k)],0_, =

a

exp [—i(m —n) ¢73], and fermion BC's [33],
Pyl oy = ZZ)P—L_OZO = Pl o, = wP+|I():L = o(u,s) = lim % (u,g,s). 9
0. These BC'’s classically induce a constant chromoelectric a/L—0 L
background field whose strength is characterized by thergm here we use = 2 and drop reference to this from
dimensionless parameter With these BC's the SF is gy notation.
givenbyZ(n, L) = [ D [U,4), ] e SI0ww, To extracto as a function ofu, we first use the inter-
The running coupling is then defined by, polating fits, given by Eq.6, to evaluate at each fixed
i 5 55 value ofu and L/a = 5, 6, 7, 8, 9, 10, and12. We
— = " logZ = <_> ., (5) take the continuum limit, at eachindependently, by fit-
72 (g%.%)  on n=m/4 on ting X (u, a/L) to a polynomial ina/ L, and extrapolating
to a/L — 0. Our result, shown in Fi@, displays sev-
with k = —24(L/a)?sin [(a/L)2 (w/z)} so that the eral plots of the quantityo (u) — u) /u versusu. This
renormalized coupling agrees with the bare coupling aPuantlty is a finite-difference version of the continuumebet

tree-level. The first two perturbative coefficients of the SF unction. In one curve (red), we fif (u,a/L < 1/6) to
beta function are the universal coefficients given in [10].2 duadratic polynomial and then extrapolate the resuit to

This renormalization scheme has the virtue that it is fullya/L |_> Od ?dditionatl)ly, Wel shovx{Zl E.u, a/L < 1/5) ex- h
non-perturbative and it is amenable to a lattice calcutatio '@Polated from a cubic polynomial fit (green). We see that

We calculate the SF renormalized coupling over a rang ese two curves are consistent, but the errors of the cu-

of bare couplings and lattice volumes. Lattice perturlyatio Ic extrapolqtlon b(_ecome_ large at~ 8. The remaining
theory givesy2 /3> as an expansion in powers gf. This (blue) curve is obtained with a constant extrapolation & th

- - L continuum using only the three points with L < 1/9.
motivates an interpolating fit [34], To asses the goodness-of-fit of any particular functional

NLja form for continuum extrapolation af we examiney? /dof
L 1 — Z i ag?. (6) overthe entire range af. For the constant extrapolation

g (gL = (blue) in Fig. 2 forL/a > 9, x?/dof varies from 0.5-2.
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FIG. 2: (o(u) — u) /u vs u for three different extrapolations to
the continuum. A contour &> = 20 is shown to provide a
measure of the strength of renormalized coupling exploexd.h
The 2-loop perturbative result is also shown here (dot-edsha-
genta).

A quadratic extrapolation (red) fat/a > 6 and a cubic
extrapolation for. /a > 5 have comparablg?/dof rang-
ing from 0.5-4 throughout the range of The constant
(quadratic and cubic) extrapolation relies on fits with two
(three) degrees-of-freedom.

FIG. 3: Plots of relative magnitudes of low order contribu-
tions to the continuum extrapolation. We fit= 2 steps at

L/a=5,6,17, 8,9, 10, and12to a polynomialy">_, a; (%)".
Then [ao| /T (blue), |as1 ($)] /T (red), ‘CYQ (%)2 /T (green),

a

and ‘053 (%)3‘ /T (cyan) are plotted versus at various values

of a/L,withT = 37 la; (2)°).

These various extrapolations all perform well at repro-
ducing the perturbative two-loop curve (magenta) at smalis small fora/L < 1/6 andu < 8, indicating that a

values ofu. If the resulting curves were to cross zero at
some larget, this would be indicative of an IRFP. We see

guadratic extrapolation to the continuum is reliaaideast
up to this input coupling strength. This indicates that the

no indication of this; in fact we see, regardless of whichrunning coupling reachesg of order20 without encoun-
extrapolation we use, the running coupling grow up to andering an IRFP.

beyond estimates of the critical coupling required to ireluc

Insight may also be gleaned by plotting the extrapolation

spontaneous chiral symmetry breaking [16]. We see no e\o the continuum at fixed coupling strengthWe show in

idence even of an inflection point, which would hint at an
IRFP at a stronger coupling strength.

Fig. 4 the example ofu = 7.5. We plotX (u,a/L) vs
a/L, along with a quadratic and cubic polynomial fit, as

We next compare these three continuum extrapolationgell as a constant extrapolation based on the three small-
more carefully and comment also on extrapolation via &sta/L values. These correspond to the fits used in Fig.

linear polynomial ina/L. For eachu, ¥ (u,a/L), eval-
uated atL/a = 5, 6, 7, 8, 9, 10, and12, is fit to a cu-
bic polynomial,p (a/L) = >_, «; (a/L)". For several
values ofa/L, the relative sizes of the constant(d}L),
O(a/L)?, and Qa/L)? terms in the polynomial are plot-

2. Fig. 4 demonstrates that a constant extrapolation to the
continuum is reasonable. Taking the largél. points into
account shows the presence of significant non-linear éattic
artifacts, in fact suggesting that the constant extrajosiat
significantly underestimates(u) for u = 7. Itis also evi-

ted vsu. We can then assess the Va||d|ty of some trun_dent that the quadratic and cubic fits eXtrapOlate to a value

cation of the polynomial continuum extrapolation within
some window ina/L. We show the results of such an
analysis in Fig.3 for L/a = 6, 9, and12. A number

of o that is well above the smallest:L points. Itis likely
that the true extrapolated value is somewhere between the
constant and quadratic extrapolations.

of interesting features are evident. At weak coupling the Recently Hayakawat al. claim to see evidence of an

lattice artifacts are small, and a constant extrapolatén a

IRFP in the two-color six-flavor theory [24]. They employ

equately describes the continuum limit. But at intermedithe SF method as we do but with the unimproved Wilson

ate and strong coupling:(2 6), lattice artifacts become

fermion action and a linear extrapolation to the continuum.

significant. Throughout the coupling range, the linear andt is reasonable to expect that for large enoughu the

quadratic lattice artifacts are comparable &g, > 1/9

linear term will be the dominant lattice artifact but it i$-di

and hence we can not perform a reliable linear extrapolaficult to quantify how large ai /a is necessary outside of

tion to the continuum. The cubic contribution, however,

perturbation theory. Other extrapolation forms, inclgdin
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